
Anatomy of protein structures: Visualizing how a
one-dimensional protein chain folds into a
three-dimensional shape
Chung-Jung Tsai*†‡, Jacob V. Maizel, Jr.‡, and Ruth Nussinov*†‡§

*Intramural Research Support Program-Science Applications International Corporation, ‡Laboratory of Experimental and Computational Biology, National
Cancer Institute-Frederick Cancer Research and Development Center, Building 469, Room 151, Frederick, MD 21702; and §Sackler Institute of Molecular
Medicine, Department of Human Genetics and Molecular Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Edited by Peter G. Wolynes, University of Illinois at Urbana-Champaign, Urbana, IL, and approved July 28, 2000 (received for review January 20, 2000)

Here, we depict the anatomy of protein structures in terms of the
protein folding process. Via an iterative, top-down dissecting proce-
dure, tertiary structures are spliced down to reveal their anatomy:
first, to produce domains (defined by visual three-dimensional in-
spection criteria); then, hydrophobic folding units (HFU); and, at the
end of a multilevel process, a set of building blocks. The resulting
anatomy tree organization not only clearly depicts the organization
of a one-dimensional polypeptide chain in three-dimensional space
but also straightforwardly describes the most likely folding path-
way(s). Comparison of the tree with the formation of the hydropho-
bic folding units through combinatorial assembly of the building
blocks illustrates how the chain folds in a sequential or a complex
folding pathway. Further, the tree points to the kinetics of the
folding, whether the chain is a fast or a slow folder, and the
probability of misfolding. Our ability to successfully dissect the pro-
tein into an anatomy tree illustrates that protein folding is a hierar-
chical process and further validates a building blocks protein folding
model.

protein folding u anatomy u hydrophobic folding unit u building block

How a one-dimensional (1D) polypeptide chain folds into a
three-dimensional (3D) entity is a fascinating problem. De-

spite our increasing knowledge, and the considerable progress
made in the improvement of the methodology for the prediction of
a protein 3D structure from its sequence (1), the protein folding
problem still presents a major hurdle. Part of the reason why the
folding problem remains so difficult derives from a lack of a folding
model that enables visualizing how a 1D protein chain folds into its
3D native state. To fill this gap, we have devised, based on the
building block folding model (2, 3), a procedure for progressively
dissecting native protein structures to reveal their anatomy. Here
we show how, based on their structural anatomy, we may visualize
their dynamic folding pathways.

The building block folding model is a ‘‘practical’’ model for
protein folding (2, 3). The model postulates that protein folding
is a hierarchical process (4) and that the basic unit from which
a fold is constructed, i.e., the hydrophobic folding unit (HFU),
is the outcome of a combinatorial assembly process of a set of
building blocks. The hydrophobic folding units in turn associate
to create intramolecular domains, which subsequently assemble
to build either an intramolecular multidomain protein fold or an
intermolecular quaternary structure. The ‘‘building block’’ itself
is defined as a highly populated, contiguous fragment in a given
protein structure. It may be composed of a single secondary
structure element or a contiguous fragment consisting of inter-
acting structural elements, such as observed in supersecondary
structures (5, 6). On the other hand, a hydrophobic folding unit
has been defined as an independent, compact, thermodynami-
cally stable folding unit with a buried hydrophobic core (7, 8).

According to the building block folding model, if we were to
splice out the building block from the protein chain, the most highly
populated conformation of the resulting peptide in solution would

very likely be similar to that of the building block when it is
embedded in the native protein. Nevertheless, whereas the confor-
mations of most building blocks are preserved in the final folded
native structure, the mutually stabilizing association between the
building blocks may still result in alternate conformations being
selected in the combinatorial assembly. In such cases, the confor-
mations of the building blocks that we observe in the native protein
structure differ from their original stand-alone conformations.

The theoretical foundation of the building block folding model
and the anatomy trees is implicit in the description of the protein
folding process as being guided by a funnel shape free energy
landscape. It is now realized that the landscape theory has its
origins in the idea of minimal frustration, already shown to be
valid for small fast-folding proteins. The minimal frustration
theory foresees that protein folding is energetically minimally
frustrated and is dominated by topological 3D interactions in a
1D polypeptide chain (9–11).

In this paper, we present an algorithm, similar to the methods
used by Lesk & Rose (12) and Wodak & Janin (13) almost two
decades ago, to locate building blocks in a given protein tertiary
structure. However, we do not confine ourselves to binary
cleavages of the polypeptide chain; instead, our algorithm allows
multiple dissections at each iterative level, creating a descending
hierarchy of contiguous fragments. Each node in the descending
anatomy tree is a one-segment building block. The entire native
structure of the protein is the starting root-node of this anatomy
tree. The locations of the building blocks correspond to the end
nodes of the top-down sprouting tree.

To be able to dissect the protein structure to create an anatomy
tree, it is essential to have a scoring function that is independent of
the fragment size. In this study, we have devised such a statistically
based scoring function. The scoring function has been constructed
to measure the relative conformational stability of all candidate
building blocks. There are three ingredients in this, empirical
fragment-size-independent scoring function. These relate to mea-
surements of compactness, degree of isolation, and hydrophobicity.
The first two correspond to the classical visual criteria of a domain
via inspection of the 3D structure of the protein, whereas hydro-
phobicity is the dominant driving force in protein folding (14). We
apply the multicut dissection progressively to sets of fragments with
the highest stability score. Hence, after completion of the cutting
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procedure, inspection of the resulting anatomy tree straightfor-
wardly yields the most likely folding micropathway. Whereas al-
ready the anatomy tree itself outlines the more probable folding
routes, analysis of the minima among the cut-out fragments yields
both the number of alternate routes, and a description of the less
probable folding pathways gliding down the funnel slopes. Further,
trapped intermediates are inferred, via misassociation of the highest
population time, or alternate local-minima building blocks, present
in our building-block map. These illustrate very good correspon-
dence with experimental fragment CD and fluorescence spectra
results (15).

Thus, the wealth of information contained in a correct dissection
of a protein tertiary structure into highly populated or stable
substructures has several biological implications. First, this infor-
mation enables analysis and assessment of the folding complexity in
terms of sequentialynonsequential folding in a more precise man-
ner (16). In turn, the folding complexity yields the likelihood of
misfolding, as well as the kinetic folding rate of a given protein.
Second, the dissection yields a library of protein fragments, ranging
from complete tertiary folds to short pieces of the chain, with their
associated favorable conformations. These can provide an ex-
tremely rich and useful resource for secondary structure, or for ab
initio tertiary structure prediction (17). Third, partial threading has
proven very useful in protein fold recognition, when new folds are
encountered. However, if such an approach is to be successful, the
key ingredient is the availability of a complete, nonredundant
library of known contiguous fragments, along with their likely
conformations.

Methods
The Scoring Function. The scoring function developed in this study
is based on a previous scoring function that has been successfully
applied to locate hydrophobic folding units (7). The HFU scoring
function has four ingredients: compactness, hydrophobicity, degree
of isolatedness, and number of segments. By definition, a building
block has only one segment. Therefore, only the first three ingre-
dients are used in the current scoring function for locating building
blocks. The scoring function we have designed is fragment-size
independent. The new function is expressed as a linear combination
of the three measurements, with each quantity calculated as the
deviation from the averaged value of known protein structures. The
new building block scoring function, ScoreB.B., is in this form:

ScoreB.B.~Z, H, I! 5 ~ZAvg
1 2 Z!yZDev

1 1 ~H 2 HAvg
1 !yHDev

1

1 ~IAvg
1 2 I!yIDev

1

1 ~ZAvg
2 2 Z!yZDev

2 1 ~H 2 HAvg
2 !yHDev

2

1 ~IAvg
2 2 I!yIDev

2 [1]

where Z, H, and I are, respectively, the compactness, the hydro-
phobicity, and the degree of isolatedness of a candidate fragment.
(A brief description of their definitions is given in supplementary
Methods, which are published on the PNAS web site, www.pnas.
org.) The corresponding arithmetic average, XAvg, and standard
deviation, XDev, are determined from a nonredundant dataset of
930 representative single-chain proteins. Average and standard
deviation with superscript 1 are calculated with respect to fragment
size; average and standard deviation with superscript 2 are calcu-
lated as a function of the fraction of the fragment size to the whole
protein. The plots of these twelve statistical values (six averages and
six corresponding standard deviations) are depicted in Fig. 1.

The size-independent stability form of the function assumes that
fragments of different sizes have equal averaged conformational
stability. However, the linearity of the hydrophobicity (H) and of
the isolatedness (I) in the region of fragment size . 150 residues
suggest that true fragmental stability should reflect this trend.
Therefore, instead of using statistical values, the HAvg and IAvg in the

scoring function are calculated from a fitted straight line, to reflect
the relative size-dependent stability. Fig. 2 shows the average scores
and their standard deviations for all fragments in the 930 repre-
sentative chains as a function of fragment size, following the
modification because of this relative stability concern.

The Cutting Procedure. The detailed description of the cutting
procedure is given in supplementary Methods. It includes four
sections: locating a basket of building blocks (relatively stable
contiguous fragments), a recursive top-down splitting process, the
multisplicing procedure, and assembly of hydrophobic folding units.

Fig. 1. Plots of statistical values of hydrophobicity, isolatedness, and com-
pactness based on fragments generated from a representative dataset of 930
single-chain proteins. For a chain with a size of Ne residues, and with a size limit
of a building block set to Ns residues, the total number of sampled fragments
is Ntotal 5 ¥(Ne 2 Ni 1 1), where Ni runs the summation from Ns to Ne. The
statistical values are derived from a large number of fragments. For example,
the number of sampled fragments with sizes of 15, 400, and 900 residues are
194,127, 19,621, and 132, respectively. Two sets of statistical values are calcu-
lated here. A and C plot the data with respect to fragment sizes ranging from
15 to 1,000 residues. B and D draw the data calculated as a function of fraction
of the fragment size with respect to the whole protein. These range from 0%
to 100%. In these figures, the standard deviations are plotted as an error bar
with their corresponding averaged values at the middle of the bar. The
standard deviation bars are drawn only every 25 residues or 5%.

Fig. 2. The averaged scores and their standard deviations for all fragments
in the 930 representative chains with respect to the fragment size.
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Results
The Anatomy Tree and Folding Pathways: the Actin Example. The
structural anatomy of every single-chain protein in the PDB
can be accessed via our web site at http:yyprotein3d.ncifcrf.
govytsaiyanatomy.html. For each chain, the results of the dissec-
tion are summarized and presented in a number of useful ways.
First, we provide a list of the fragments found in the first step of the
anatomy process. These are the local minima in the fragment map.
From this reservoir, any set of fragments that yields the entire
protein via a combinatorial assembly is a plausible folding pathway.
Table 1, which is published as supplemental material, presents the
results for actin (PDB: 1atnA) as an example.

Second, the most likely folding pathway is depicted on the
fragment map. Fig. 3A illustrates one example, for actin. Local
minima are plotted in horizontal blue lines. The collection of
building blocks that present the most likely folding pathway are
in red lines. For actin, inspection of the plot reveals that no single
route dominates the folding path. Building blocks assemble (the
bottom half of the figure) to eventually form the entire native
structure at the top.

Third, the results of the dissection can further provide the
detailed anatomy of the step-by-step paths that follow the most
likely building block assembly routes (Fig. 3B). The number of
branches in each node indicates how many building blocks have

Fig. 3. The actin example. (A) The two-dimensional fragment map of actin,
1atnA. The x and y coordinates represent the fragment location and size. Local
minima in the fragment map are indicated by solid circles. The associated
horizontal line for each minima reflects its size. The results of the anatomy (a
collection of building blocks at each level) are highlighted in red color, to
distinguish them from those in blue, which represent the local minima. Lines are
drawn to indicate parent–child relationship. This representation shows clearly
themost likelyfoldingmicropathwayamongmanyotherplausiblepathways. (B)
The detailed anatomy information complementing A. Starting with the entire
protein as a parent node (solid circle), the branches (empty circles) are linked to
their parent node. At the next anatomy level, each child node becomes a new
starting parent node. If a new parent node does not produce any children, it is
an end node of the building block. A vertical bar is drawn to reflect the size of
the end-node building block. In the figure, each building block (node) is labeled
with its stability score and a letter in parenthesis. The letter indicates to which
hydrophobic folding unit (A, B, C, or D) the building block belongs. The scores of
the corresponding HFUs at each level are listed on the upper right hand side of
the figure, next to the anatomy tree. (C) The graphical presentation at each
anatomy level foractin (1atnA).Theupper rowdepicts theresultsof thebuilding
block assignments for three dissecting levels, and the lower row depicts their
corresponding hydrophobic folding unit assignments. In the assignments, each
colorrepresentsabuildingblockoranHFU. Inthebuildingblockassignment, the
chain goes from the N terminus to the C terminus with the following color order:
(1) red, (2)green, (3) yellow, (4)blue, (5) cyan, (6)magenta, (7)orange, (8)purple,
(9) pink, (10) light green, and (11) dark blue. In the HFU assignment, the color
goes in alphabetical order: (A) red, (B) green, (C) yellow, (D) blue. Every combi-
natorial possibility of assembling fragments from the pool of local minima
(generated in the first step) is a candidate in the cutting of the protein into
buildingblockfragments.Toprovideaspecificexample, thefragments centered
near residues 90 (for the fragment 7–138), 258 (146–337), and 360 (347–371)
yield one of many candidates that fulfill two conditions. First, fragments of any

combinatorial assembly must cover the entire node-fragment. (For the starting node, it is the whole protein.) Second, fragment overlap among the selected fragments
must be at most 7 residues. Next, among all combinatorially assembled candidates, the average score of the best two fragments (if there more than two for this
node-fragment in the pool) is used to judge the best cutting. The ‘‘best of two’’ is an ad hoc rule, simply because in our hands it works better than any other choice
with the designed scoring function. In A, at the first cutting level, these three fragments centered near residues 90, 258, and 360 have the highest score among all other
combinatorially assembled fragments from the local-minima pool. Hence, in the example here, the protein has been muli-spliced into three fragments at the first level
based on the scores of the two fragments, 7–138 and 146–337.
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been derived from the corresponding parent building block.
Each building block is labeled with a score and with a letter in
parenthesis. The letter indicates to which HFU (A, B, C, or D)
the building block belongs. The scores of the corresponding
HFUs at each level are listed on the upper right hand side of the
figure, next to the anatomy tree.

Fourth, Fig. 3C depicts the anatomy at each level for the 1atnA
example. The figure presents a step-by-step graphic illustration of
the structural anatomy. In the figure, the upper row displays the
anatomy of the building block cutting, and the lower row presents
the HFU assignments, through a combinatorial assembly process of
the building blocks. By going through the anatomy tree organiza-
tion, we can clearly follow how the 3D fold formed from the 1D
polypeptide chain. Moreover, actin is a complex, nonsequentially
folding protein (3). If we compare the building blocks anatomy (Fig.
3C Upper) with the HFU assignments (Fig. 3C Lower), we can see
how the nonsequential interactions between the building blocks
have arisen during the folding of the actin chain. At level 1, we see
three building blocks and two HFUs. With the head and tail
interaction (building blocks 1 and 3 in HFU unit B) being excluded
from the classification of a nonsequential interaction (3), the
anatomy level 1 of actin is classified as belonging to the sequential
folding category. At level 2, there are seven building blocks and four
HFUs with two HFU units (unit B and unit D) illustrating a
nonsequential interaction. The nonsequential interaction in unit B
is between building blocks 4 and 6 and in unit D between building
blocks 1 and 3. Hence, by going back from level 3 to level 1, we trace
the major folding pathways: through a comparison of the top
(dissection) building block row and the bottom (assembly to hy-
drophobic folding unit row), we can identify the building blocks as
they progressively assemble to yield the units. For example, at level
3, i.e., at the bottom of the tree (right hand side of the figure),

building blocks 1, 3, 4, and 11 assemble to yield HFU D, whereas
5, 8, 9, and 10 yield hydrophobic unit B, and 6 and 7 yield unit A.
Misassembly of any of these, at this or at any other level, or of any
other building blocks present in the fragment map (Fig. 3A, and
supplementary Table 1), will result in trapped intermediates,
nestling in their wells along the folding micropaths. Whereas in
these intermediates the conformations of the building blocks them-
selves may be at their native states, their misassociations will
inevitably result in nonnative contacts. These will yield populations
of conformers, with different nonnative contacts.

The Case of a-Lactabumin. Here we analyze the well studied a-lact-
albumin (a-LA). We illustrate that the anatomy trees not only are
consistent with visual domain and subdomain classification, but also
are validated by experiments. a-LA is a critical regulatory compo-
nent in lactose synthase in mammals. It contains two subdomains
with substantial intersubdomain interactions. The a-subdomain
contains four a-helices, and the b-subdomain consists of a small
b-sheet and loops. The native structure has four disulfide bonds.
One of these connects two helices in the helix–loop–helix structure
responsible for calcium binding.

a-LA forms an equilibrium molten globule under a variety of
mildly denaturing conditions. The best studied is the acid-denatured
state (A-state). At neutral pH, the molten globule state can be
obtained by depleting bound calcium, by abolishing four disulfide
bonds (mutating cysteines to alanines, ref. 18), or by mixing with a
denaturant. Further, a peptide model of the a-subdomain also
forms a molten globule-like state (19). a-LA molten globule is
compact, with significant native-like secondary structures in the
a-subdomain. The b-subdomain is more disordered.

The folding picture emerging from different probing methods
is that a-LA folds via a molten globule intermediate (20). The
species formed in the early stages of refolding of the apo-protein
have at least 85% of the a-helical content of the native state, and
near-native compactness (21). A structure that persists in these
transient species is located predominantly in the a-subdomain of
the native protein and resembles that present in the partially
folded A-state at low pH. Folding in the presence of Ca21 is
similar to that in its absence, although the rate increases by more
than two orders of magnitude. The disulfide bonds stabilize the
overall fold rather than drive folding. The rate-determining
transition from the compact partially structured (molten glob-
ule) species to the native state is highly cooperative. In terms of
thermodynamics, the entropy of dehydration is the dominant
factor providing stability for the compact intermediate state on
the folding pathway, whereas for the stability of the native state,
the conformational enthalpy is the dominant factor (22).

Limited proteolysis, a complementary approach to common
physiochemical methods, is useful for probing protein structure
and dynamics (23–25). Local unfolding (chain flexibility) may be
responsible for selective peptide bond fission of a protein
substrate. Results deduced from limited proteolysis of partly
folded states of a-LA are in good agreement with those derived
from NMR and other probing methods (25).

Fig. 4 gives a graphical illustration of the anatomy at each level
for a-LA (123 residues). At the first anatomy level, the protein
remains almost intact (3–123), indicating it is a cooperative unit. At
the next level, it is cut into three fragments (3–38, 39–105, and
106–123, respectively), with two assembled hydrophobic folding
units. At the last level, the one-segment folding unit (fragment
39–105) is further divided into three fragments (39–55, 56–81, and
87–108). The most likely folding pathway is in general remarkably
consistent with experiments that probe the folding mechanism, and
especially the limited proteolysis of Fontana and coworkers (25).
First, fragment 39–55 at the last level with the lowest score (24.90)
correlates nicely with the initial proteolytic cuts of a-LA in its
A-state or apo form by three proteases. The experimental cleavages
occur at the same 39–54 region, with the actual site(s) of the cuts

Fig. 4. The graphical representation at each anatomy level for a-LA (PDB code:
1hfzA). The results presented in this figure corresponds very nicely with the
experimental results obtained by partial proteolysis (25). Note that, in this figure,
a single helix constitutes a building block fragment. Because the scoring function
is empirical, it is unclear above which threshold value a cut fragment is stable
when isolated. According to the definition of the scoring function, if a fragment
score is positive and the size is above 200 residues, the fragment will be more
stable than at least half of the known conformations in the PDB for fragments
with similar size (Fig. 2). A short helix assigned as a building block is not owing to
its stability (score) but to its fragment size. If the size of an unassigned fragment
is larger than the minimum size of a building block, it is assigned as a building
block.
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depending on the protease used (25). Second, at the second level,
the existence of the three fragments (two cleavage points, 38y39
and 105y106) also reflect nicely the limited proteolytic evidence,
namely, that subsequent cleavages occur mostly at chain regions
31–35 and 95–105. Third, the two-segment folding unit (3–38 and
106–123) is supported by evidence that some structure is obtained
for a two-chain species 1–40 and 104–123 (25). Fourth, fragment
53–103 is structured, as characterized by similar a-helical content as
the corresponding chain segment in native a-LA. This 53–103
fragment corresponds to the association of two sequentially linked
building blocks, 56–81 and 87–108. Consistently, there is a local
minimum fragment 48–105 with a score of 2.94 in the complete list
of 20 local minima of the fragment map (not shown). Fifth, the
111–120 peptide populates a nonnative structured conformation, in
rapid exchange with a random coil state in aqueous solution (26).
This further supports fragment 106–123 (with a score of 29.10 as
compared with the score of fragment 3–38, 20.53) as being
stabilized in its native conformation by associating with fragment
3–38. Sixth, the peptides, residues 72–100 from bovine a-LA (with
or without Cys73 and Cys91 replaced by alanines) are monomeric
and unstructured in aqueous solution (20). This fact, along with the
calculated score for fragment 87–108 (22.95) and the local mini-
mum fragment 70–105 (not shown) with a score of 22.38, reflect
the ability of our scoring function in assessing fragment stability.

Discussion
The Anatomy Tree: Visualizing Dynamic Folding Pathways from Static,
Native Folds. In general, the anatomy of the protein tertiary struc-
ture is based on two simple criteria. First, the 3D structure is divided
into domains. If individual compact entities stand out in a simple
visual inspection, such a division should be feasible. Second, within
the domain, recursive structural motifs are recognized as secondary
structures (a-helices and b-strands) or are further recognized as
supersecondary structures, e.g., as in the case of the helix–turn–
helix motif. Richardson (27) devised a particularly nice represen-
tation of protein structural anatomy. However, when viewed in this
traditional way of protein structural anatomy, no direct relationship
can be derived between the recognized domains, supersecondary
structures, and secondary structural elements.

Here, we show how from 1D protein chain one can visualize the
dynamic folding pathways leading to the 3D fold. We do this by
creating an anatomy tree, in terms of the protein folding process.
The goals behind the development of an algorithm for dissecting the
native protein structure to reveal its anatomy are 2-fold. First, at the
lowest, final dissection level, we obtain a set of building blocks, the
elements from which the native structure is constructed. However,
additionally, by carrying out the dissection through a step-wise,
multisplicing progressive procedure, our intention is to obtain the
tree organization of the anatomy. And, it is the tree itself that
immediately reveals the folding pathway(s) of the polypeptide
chain. By following the anatomy tree, from the top down, choosing
the routes of the highest scoring building blocks as the nodes sprout,
we are able to gauge the more highly traversed routes.

In constructing such an upside-down anatomy tree starting
with the native conformation, we make two assumptions. First,
the conformations of the building blocks that we observe in the
native structure are likely to be those that the building blocks
inherently possess. That is, fragments with the same amino acid
sequence in solution would most probably have similar confor-
mations. And, second, the stability measurement of an isolated
contiguous fragment in a particular conformation reflects its
population time during the folding process. In practice, this
implies that, in choosing the building blocks, we assume that the
building blocks to which we assign high stability scores are the
ones that have high population times in solution.

The first assumption appears to be valid. It is well known that
protein folding is not a random search toward the native
conformation (28). To avoid the huge random search time in the

folding process, it is logical to assume that there are some
favorable local structures with high population times. Experi-
mental and theoretical studies have already implicitly considered
their existence. To name a few, short peptides such as a-helices
or b-strands have been observed in solution with substantial
population times (29–31). Some secondary structures have been
observed experimentally during the very early stages of the
folding process (32–34). Peptide fragments have been consid-
ered as the model for an initiation of protein folding (35–37). In
theory, both the initial formation of ‘‘microdomains’’ in protein
folding in the collision-diffusion model (38) and the proposed
‘‘foldon’’ approach (39), where a protein is built from a collection
of foldons, are consistent with the ‘‘building blocks’’ concept.

Our second assumption also appears valid. Peptides with high
population times have been shown to have a strong hydrophobic
core. A relevant example is the b-hairpin peptide. Our simula-
tions of a 16-residue b-hairpin peptide fragment from protein G
(40) have shown that it folds rapidly and cooperatively to a
conformation with a defined secondary structure and a packed
hydrophobic cluster of aromatic side chains. In experiments, this
peptide has been observed to be very stable (41).

In practice, then, for our purpose here, the critical issue is the
development of a scoring function that would be able to measure
the stability of any fragment of the chain, in a fragment-size-
independent way. Conforming to such rationale, our algorithm
dissects the protein structure into high-population time fragments.
The function that we have devised for measuring the stability of the
candidate building blocks is statistically based. By including the two
types of terms, with respect to both fragment size and as a function
of the fraction of the fragment size to the whole protein, we obtain
a balance for all fragment sizes. To validate the success of our
fragment-size-independent scoring function will require a set of
systematically carried out stability measurements either from ex-
periments (25, 41) or from theoretical calculations (42) for protein
fragments of different sizes. However, the consistency and the
improvement of the HFU assignments via a combinatorial assembly
of the assigned building blocks is an indirect evidence for its validity.

The Usefulness of the Anatomy Tree. Being able to construct an
anatomy tree for any protein structure is particularly useful.
First, by inspecting the trees we are able to see whether proteins
fold through multiple routes. In such a multiple-route case,
building blocks at different locations assemble separately; only at
later stages do these units combine to form larger structural
elements and ultimately the entire fold.

Second, anatomy trees narrate a sequential versus a nonse-
quential folding pathway story of the protein. The fragment map
(Fig. 3A) immediately suggests the likelihood that the protein is
a sequential or a nonsequential folder. If more than two branches
descend from a node, the protein is likely to be a nonsequential,
folding already at that node-level. Third, inspection of the HFUs
also illustrated the folding complexity.

Fourth, anatomy trees straightforwardly suggest which pro-
teins are fast folding chains. Fast-folding proteins are likely to be
sequentially folding proteins (16, 43). Fifth, here, we illustrate
only the predominant pathway down the funnel slope. Hence, by
weighing the relative scores at each node, we can choose
alternate routes. Fast folders may be expected to have a pre-
dominant folding pathway. Sixth, through inspection of the
building blocks in the fragment map, we may obtain an insight
into folding intermediates trapped along the funnel walls. The
conformers residing in these wells largely represent native
building blocks in their native conformations. However, their
associations involve nonnative contacts.

Recently the contact order, an average measurement of the
sequential distance of residues that interact in the structure, has
been devised (43, 44). The contact order correlates highly with
measured folding rates for a set of single domain proteins with
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no detectable intermediate folding state. We expect that the
contact order between building blocks in the anatomy tree and
their stabilities (i.e., computed scores) together with a simple
kinetic model will give at least as good a correlation.

Hence, the anatomy tree is rich in useful information, illustrating
the actual pathways, the kinetics of folding, the type of folds, and
the probability of misfolding. However, additionally, we have a
collection of fragments along with their conformations that form
the protein structure. Because we collect the fragments at each
stage of the dissection process, at the end of the procedure, we are
left with a large collection of fragments, ranging in sizes from
shorter building blocks to the entire folds. This rich collection is very
useful for the prediction of protein structures, whether through fold
recognition or for ab initio calculations. Because along with the
fragments their stability scores are also presented, these can also
serve as a useful library for picking the more stable candidates for
folding (unfolding) simulations. (A detailed discussion of these
points is given in the supplementary material.)

Conclusions
The approach illustrated here is based on the notion that the native
state is a critical determinant of the folding mechanism and of its
rate. Rather than imagining that in the search for an optimal fold
all potential contacts are tried, leading to a vast number of
intermediates formed in the transition state, here we suggest that
the native contacts predominate as the chain undergoes its folding
process. This idea is implicit in viewing protein folding as being
guided by a funnel-shaped free energy landscape. It is based on the
idea of minimal frustration that has been shown to be valid for
small, fast folding proteins (9–11). Furthermore, these native
contacts are largely those existing relatively near each other on the
linear chain. Hence, such native contacts are kinetically favored.
Even if eventually longer range contacts prevail, the chain would
still go through the trial-formation of nearby contacts first, because
they are kinetically more favorable than the ones that are farther
away. Further, the native contacts that are made early in the folding
process are those involving intrabuilding blocks folding. Most
building blocks have high population times, as is evident from their
observation in solution when in a peptide-fragment form. This
suggests that similar folds will manifest similar folding mechanisms,
regardless of the variability in their sequences and in their stabilities.
These points have been discussed recently (44). Consistently, we

observe this situation when we compare the anatomy trees of a
mesophilic (from Clostridium symbiosum) and a thermophilic (from
Pyrococcus furiosus) glutamate dehydrogenases (not shown). These
arguments further suggest that the breadth of the transition state is
limited, because it largely involves misassociations of preformed
building block conformations, rather than all hypothetical, potential
contacts. This is consistent with the view that, in reality, the
difference between the ‘‘old view’’ and the ‘‘new view’’ is not that
large (10).

Here, we show how, through a dissection procedure of the
native folds, we may visualize folding pathways. Based on a
practical folding model, ‘‘the building block model,’’ we have
designed a top-down multisplicing procedure and a fragment-
size-independent scoring function to analyze the anatomy of
protein structures. Given 3D protein coordinates, our approach
is able to provide explicitly an outline of the most likely folding
pathway, via a tree organization of building blocks. The results
for any of the single-chain proteins are available via web
browsing at http:yyprotein3d.ncifcrf.govytsaiyanatomy.html.
The structural anatomy as generated by our algorithm clearly
depicts the organization of a 1D polypeptide chain in 3D space.
The success of the anatomy procedure itself further validates the
hierarchical nature of protein folding and implies that the folding
process is very likely not dominated by a single micropath. If we
accept that protein folding is a hierarchical process, we can
combinatorially assemble sets of building blocks to produce
hydrophobic folding units. Consistently, by performing this
procedure, we have obtained a significant improvement in the
hydrophobic folding unit assignments, further illustrating the
usefulness of this anatomy tree protein folding concept.
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